In-vitro mapping of E-fields induced near pacemaker leads by simulated MR gradient fields

نویسندگان

  • Howard I Bassen
  • Gonzalo G Mendoza
چکیده

BACKGROUND Magnetic resonance imaging (MRI) of patients with implanted cardiac pacemakers is generally contraindicated but some clinicians condone scanning certain patients. We assessed the risk of inducing unintended cardiac stimulation by measuring electric fields (E) induced near lead tips by a simulated MRI gradient system. The objectives of this study are to map magnetically induced E near distal tips of leads in a saline tank to determine the spatial distribution and magnitude of E and compare them with E induced by a pacemaker pulse generator (PG). METHODS We mapped magnetically induced E with 0.1 mm resolution as close as 1 mm from lead tips. We used probes with two straight electrodes (e.g. wire diameter of 0.2 mm separated by 0.9 mm). We generated magnetic flux density (B) with a Helmholtz coil throughout 0.6% saline in a 24 cm diameter tank with (dB/dt) of 1 T/sec (1 kHz sinusoidal waveform). Separately, we measured E near the tip of leads when connected to a PG set to a unipolar mode. Measurements were non-invasive (not altering the leads or PG under study). RESULTS When scaled to 30 T/s (a clinically relevant value), magnetically-induced E exceeded the E produced by a PG. The magnetically-induced E only occurred when B was coincident with or within 15 msec of implantable pacemaker's pulse. CONCLUSIONS Potentially hazardous situations are possible during an MR scan due to gradient fields. Unintended stimulation can be induced via abandoned leads and leads connected to a pulse generator with loss of hermetic seal at the connector. Also, pacemaker-dependent patients can receive drastically altered pacing pulses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Theoretical Analysis of the Induced Voltage along Implant Leads due to Gradient Fields

Introduction: Magnetic resonance imaging (MRI) is an important imaging technique to diagnose various diseases. However, patients with an implanted medical device, e.g. pacemakers, cannot benefit from this diagnostic modality. To analyze the adverse effects of MRI on patients with implants, various experimental studies have been performed [1]. It is observed that due to radiofrequency pulses, he...

متن کامل

The influence of neutron contamination on pacemaker in photon beam radiotherapy by LINAC using the Monte Carlo method

Introduction: In radiation therapy with high-energy photon beams (E > 7 MeV) neutrons are generated mainly in LINACs head thorough (γ, n) interactions. These neutrons affect the shielding requirements in radiation therapy rooms. According to the protocol TG-34, photon absorbed dose of 10Gy can cause permanent damage to the pacemaker and the dose of 2Gy can make minor changes in...

متن کامل

The influence of neutron contamination on pacemaker in photon beam radiotherapy by LINAC using the Monte Carlo method

  In radiation therapy with high-energy photon beams (E > 10 MV) neutrons are generated mainly in LINACs head thorough (γ,n) interactions. These neutrons affect the shielding requirements in radiation therapy rooms. According to the AAPMTG-34 report, photon absorbed dose of 10Gy can cause permanent damage to the pacemaker and the dose of 2Gy can make minor changes in the functioning of the pac...

متن کامل

Cardiac pacemaker: in vitro assessment at 1.5 T.

BACKGROUND In vitro testing is used to determine safe parameters before performing magnetic resonance imaging (MRI) on a patient with an implant. Therefore, the objective of this study was to evaluate a cardiac pacemaker using a 1.5-T magnetic resonance (MR) system. METHODS A modern cardiac pacemaker (INSIGNIA I PLUS, Model 1298, and FINELINE II, Model 4471, pacing leads; Guidant Corporation,...

متن کامل

The modeling of induced current density in eyes from static magnetic fields produce by MR scanner

Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009